0   reviews on Udemy

IOS, Security Device Manager and IP Routing MCQ (Networking)

Examination Preparation and Interview questions on IOS, Security Device Manager and IP Routing MCQ (Networking)
Course from Udemy
 0 students enrolled
 en
IOS and Security Device Manager
IP Routing

Internetwork Operating System (IOS) is a family of network operating systems used on many Cisco Systems routers and current Cisco network switches. Earlier, Cisco switches ran CatOS. IOS is a package of routing, switching, internetworking and telecommunications functions integrated into a multitasking operating system. Although the IOS code base includes a cooperative multitasking kernel, most IOS features have been ported to other kernels such as QNX and Linux for use in Cisco products

Not all Cisco products run IOS. Notable exceptions include ASA security products, which run a Linux-derived operating system, carrier routers which run IOS-XR and Cisco's Nexus switch and FC switch products which run Cisco NX-OS


Device Manager is a Control Panel applet in Microsoft Windows operating systems. It allows users to view and control the hardware attached to the computer. When a piece of hardware is not working, the offending hardware is highlighted for the user to deal with. The list of hardware can be sorted by various criteria

For each device, users can:

  1. Supply device drivers in accordance with the Windows Driver Model

  2. Enable or disable devices

  3. Tell Windows to ignore malfunctioning devices

  4. View other technical properties

  5. Device Manager was introduced with Windows 95 and later added to Windows 2000. In NT-based versions, it is included as a Microsoft Management Console snap-in


IP routing is the field of routing methodologies of Internet Protocol (IP) packets within and across IP networks. This involves not only protocols and technologies but includes the policies of the worldwide organization and configuration of Internet infrastructure. In each IP network node, IP routing involves the determination of a suitable path for a network packet from a source to its destination in an IP network. The process uses static configuration rules or dynamically obtained status information to select specific packet forwarding methods to direct traffic to the next available intermediate network node one hop closer to the desired final destination, a total path potentially spanning multiple computer networks

Networks are separated from each other by specialized hosts, called gateways or routers with specialized software support optimized for routing. In routers, packets arriving at an interface are examined for source and destination addressing and queued to the appropriate outgoing interface according to their destination address and a set of rules and performance metrics. Rules are encoded in a routing table that contains entries for all interfaces and their connected networks. If no rule satisfies the requirements for a network packet, it is forwarded to a default route. Routing tables are maintained either manually by a network administrator, or updated dynamically with a routing protocol. Routing rules may contain other parameters than source and destination, such as limitations on available bandwidth, expected packet loss rates, and specific technology requirements

IP forwarding algorithms take into account the size of each packet, the type of service specified in the header, as well as characteristics of the available links to other routers in the network, such as link capacity, utilization rate, and maximum datagram size that is supported on the link. In general, most routing software determines a route through a shortest path algorithm. However, other routing protocols may use other metrics for determining the best path. Based on the metrics required and present for each link, each path has an associated cost. The routing algorithm attempts to minimize the cost when choosing the next hop

A routing protocol is a software mechanism by which routers communicate and share information about the topology of the network, and the capabilities of each routing node. It thus implements the network-global rules by which traffic is directed within a network and across multiple networks. Different protocols are often used for different topologies or different application areas. For example, the Open Shortest Path First (OSPF) protocol is generally used for routing packets between subnetworks within an enterprise and the Border Gateway Protocol (BGP) is used on a global scale. BGP is the de facto standard of worldwide Internet routing

These questions will give you basic idea for Examination Preparation and/or interview on IOS, Security Device Manager and IP Routing

Please Note:

  1. These questions are only for practice and understanding level of knowledge only. It is not necessary that these questions may or may not appear for examinations and/or interview questions

  2. In this practice test, because of large amount of questions (around 36 questions) some of questions may have repeated

  3. I had to put as 70% pass rate because there may also be wrong answers from my side

IOS, Security Device Manager and IP Routing MCQ (Networking)
$ 19.99
per course
Also check at

FAQs About "IOS, Security Device Manager and IP Routing MCQ (Networking)"

About

Elektev is on a mission to organize educational content on the Internet and make it easily accessible. Elektev provides users with online course details, reviews and prices on courses aggregated from multiple online education providers.
DISCLOSURE: This page may contain affiliate links, meaning when you click the links and make a purchase, we receive a commission.

SOCIAL NETWORK