0   reviews on edX

Feature Engineering for Improving Learning Environments

Every model used to predict a future outcome depends upon the quality of features used. This course focuses on developing better features to create better models.
Course from edX
 0 students enrolled
 en
How can data-intensive research methods be used to create more equitable and effective learning environments? In this course, you will learn how data from digital learning environments and administrative data systems can be used to help better understand relevant learning environments, identify students in need of support, and assess changes made to learning environments. This course pays particular attention to the ways in which researchers and data scientists can transform raw data into features (i.e., variables or predictors) used in various machine learning algorithms. We will provide strategies for using prior research, knowledge from practice, and logic to create features, as well as build and evaluate machine learning models. The process of building features will be discussed within a broader data-intensive research workflow using R.
Feature Engineering for Improving Learning Environments
Also check at

About

Elektev is on a mission to organize educational content on the Internet and make it easily accessible. Elektev provides users with online course details, reviews and prices on courses aggregated from multiple online education providers.

SOCIAL NETWORK