0   reviews on edX

Deep Learning with Python and PyTorch

This course is the second part of a two-part course on how to develop Deep Learning models using Pytorch.
Course from edX
 0 students enrolled
 en
This course is the second part of a two-part course on how to develop Deep Learning models using Pytorch. In the first course, you learned the basics of PyTorch; in this course, you will learn how to build deep neural networks in PyTorch. Also, you will learn how to train these models using state of the art methods. You will first review multiclass classification, learning how to build and train a multiclass linear classifier in PyTorch. This will be followed by an in-depth introduction on how to construct Feed-forward neural networks in PyTorch, learning how to train these models, how to adjust hyperparameters such as activation functions and the number of neurons. You will then learn how to build and train deep neural networks—learning how to apply methods such as dropout, initialization, different types of optimizers and batch normalization. We will then focus on Convolutional Neural Networks, training your model on a GPU and Transfer Learning (pre-trained models). You will finally learn about dimensionality reduction and autoencoders. Including principal component analysis, data whitening, shallow autoencoders, deep autoencoders, transfer learning with autoencoders, and autoencoder applications. Finally, you will test your skills in a final project.
Deep Learning with Python and PyTorch
Also check at

About

Elektev is on a mission to organize educational content on the Internet and make it easily accessible. Elektev provides users with online course details, reviews and prices on courses aggregated from multiple online education providers.

SOCIAL NETWORK