Regression techniques for students and professionals. Learn Polynomial & Logistic Regression and code them in python

Program Polynomial Regression from scratch in python.

Program Logistic Regression from scratch in python.

Predict output of model easily and precisely.

Use Regression model to solve real world problems.

Use Polynomial Regression to Model Non Linear Datasets.

Build Model to Predict CO2 and Global Temperature by Polynomial Regression.

Classify Handwritten Images by Logistic Regression

Classify IRIS Flowers by Logistic Regression

In statistics, **Logistic Regression**, or logit regression, or logit model is a regression model where the dependent variable (DV) is categorical. This article covers the case of a binary dependent variable—that is, where the output can take only two values, "0" and "1", which represent outcomes such as pass/fail, win/lose, alive/dead or healthy/sick. Cases where the dependent variable has more than two outcome categories may be analysed in multinomial logistic regression, or, if the multiple categories are ordered, in ordinal logistic regression. In the terminology of economics, logistic regression is an example of a qualitative response/discrete choice model.

**Logistic Regression** was developed by statistician David Cox in 1958. The binary logistic model is used to estimate the probability of a binary response based on one or more predictor (or independent) variables (features). It allows one to say that the presence of a risk factor increases the odds of a given outcome by a specific factor.

**Polynomial Regression** is a form of regression analysis in which the relationship between the independent variable x and the dependent variable y is modelled as an nth degree polynomial in **X**. Polynomial regression fits a nonlinear relationship between the value of **X** and the corresponding conditional mean of Y. denoted E(y |x), and has been used to describe nonlinear phenomena such as the growth rate of tissues, the distribution of carbon isotopes in lake sediments, and the progression of disease epidemics. Although polynomial regression fits a nonlinear model to the data, as a statistical estimation problem it is linear, in the sense that the regression function E(y | x) is linear in the unknown parameters that are estimated from the data. For this reason, **Polynomial Regression** is considered to be a special case of multiple linear regression.

The predictors resulting from the polynomial expansion of the "baseline" predictors are known as interaction features. Such predictors/features are also used in classification settings.

In this Course you learn **Polynomial Regression & Logistic Regression **You learn how to estimate output of nonlinear system by **Polynomial Regressions** to find the possible future output Next you go further You will learn how to classify output of model by using **Logistic Regression**

In the first section you learn how to use python to estimate output of your system. In this section you can estimate output of:

**Nonlinear Sine Function**

**Python Dataset**

**Temperature and CO2**

In the Second section you learn how to use python to classify output of your system with nonlinear structure .In this section you can estimate output of:

**Classify Blobs**

**Classify IRIS Flowers**

**Classify Handwritten Digits**

___________________________________________________________________________

**Important information before you enroll:**

In case you find the course useless for your career, don't forget you are covered by a

**30 day money back guarantee, full refund, no questions asked!**

Once enrolled, you have

**unlimited, lifetime access to the course!**

You will have

**instant and free access to any updates**I'll add to the course.

You will give you

**my full support**regarding any issues or suggestions related to the course.

Check out the curriculum and

**FREE PREVIEW lectures**for a quick insight.

___________________________________________________________________________

**It's time to take Action!**

Click the "**Take This Course**" button at the top right now!

**.. .Don't waste time! Every second of every day is valuable...**

I can't wait to see you in the course!

Best Regrads,

Sobhan

Is the online course "Artificial Intelligence #2: Polynomial & Logistic Regression" free?

Is "Artificial Intelligence #2: Polynomial & Logistic Regression" an online course worth taking?